Search results for "Biogenic nanostructure"

showing 2 items of 2 documents

Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1

2018

The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…

0301 basic medicineBioconversionStatic Electricity030106 microbiologychemistry.chemical_elementBioengineeringSelenious AcidSettore BIO/19 - Microbiologia GeneraleSelenium pollutionSelenium03 medical and health sciencesMinimum inhibitory concentrationchemistry.chemical_compoundNanoparticleBiosynthesisRhodococcusParticle SizeSelenite Rhodococcus aetherivorans Selenium nanoparticles Selenium nanorods Biogenic nanostructuresSelenium nanorodMolecular BiologyNanotubesbiologyBiogenic nanostructureRhodococcus aetherivoranSpectrometry X-Ray EmissionGeneral Medicinebiology.organism_classificationDynamic Light ScatteringSelenium nanoparticleBacteria AerobicNanotube030104 developmental biologychemistryBiochemistry13. Climate actionSelenious AcidSeleniteNanoparticlesMetalloidRhodococcusSeleniumRhodococcuBiotechnologyNew Biotechnology
researchProduct

Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions

2016

Tellurite (TeO3 2−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO3 2− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO3 2−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO3 2− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically …

0301 basic medicineMicroorganism030106 microbiologyOxyanionBioengineeringSettore BIO/19 - Microbiologia GeneraleApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compoundMinimum inhibitory concentrationBiogenic nanostructuresTelluriteRhodococcusFood scienceTellurium nanorodsSettore CHIM/02 - Chimica FisicaNanorods biosynthesisNanotubesbiologyStrain (chemistry)ResearchBiogenic nanostructureNanorods biosynthesiAerobiosiRhodococcus aetherivoranElemental telluriumTellurium nanorodbiology.organism_classificationAerobiosisNanotubeRhodococcus aetherivoranschemistryBiochemistryTelluriumAnaerobic exerciseRhodococcusBacteriaIntracellularRhodococcuBiotechnology
researchProduct